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SUMMARY

General thin-airfoll theory for a compressible fluiad
is formulated as boundary problem for the velocity poten—
tial, without recourse %0 the theory of vortex motion,

On the basis of this formulation the integral equa—
tion of lifting—surface theory for an incompressible fluid
is derived with the chordwise component of the fliuid ve- .
locity et the airfoll as the function to be determined, It
is shown how by integration by parts this integral equation
can be transformed into the Biot-Savart theorem, A clari-
fication 1s gained regarding the use of principal value
definitions for the integrals which occcur,

The integral equation of lifting-surface theory is

used as the starting point for the estadblishment of a theory
for the nonstationary airfoll which is a generalization of
lifting-line theory for the stationary airfoil and which
might be called, "lifting—strip" theory, EBExplicit expres—
sions are given for section 1ift and section moment in terms
of the circulation function, which for any given wing de—
flection is to be determined from an integral equation which
is of the type of the equation of 1ifting-line theory, Dhe
results obtained are for airfoils of uniform chord, They

can be extended to tapered airfoils, One of the main tses

of the results should be that they furnish a practical means
for the analysis of the aerodynamic span effect in the problem
of wing flutter, The range of applicability of "lifting—
strip" theory is the seame as that of lifting~line thsory so
that its results may be applied to alrfoils with aspect ratios
as low as three,
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INTRODUCTION

The theory of thin airfoils may be characterized by
the statement that it is the linear theory, obiained through
simplifications from an exact formulation of airfoil theory
for a nonviscous fluia, It is based on the assumptions of
infinitely thin airfoil sections, infinitesimesl angls of
attack,end infinitesimal camber, In spite of these restric-
tive assumptions it is plausidle and generally accepted that
the theory reproduces the characteristie behavior of actual
wings with finite angle of sttack and camber rather accurately
in many practical prodblems,

First contributions to the t heory of thin airfoils are
Prandtl's theory of the lifting line (reference 1) for the
determination of the nerodynamic span effect for stationary
airfoils of not too small aspect ratio, and Munk!s two—
dimensional theory of stationary airfoils (reference 2),

Shortly nfter Munk's work investigations were made on
the two—dimensional linear theory of nonstationary motion
independently by Birnbaum {(reference 3) and by Wagner (refer-
ence 4), Birnbaum reduces the problem t0 an integral equo—
tion by means of theorems on vortex motion while Wagner ob-—
tains an integral equation by way of formulating the boundary
problem for the vslocity potential, Birnboum's formulation
(in common with the formulation of more gerneral problems by
means of the "acceleration potentlal® presently to be dis—
cussed) possesses the disadvaniage of leading to an integral
equation with a consideradbly more complicated kernel than in
the velocity potentisl formulstion of the same probdlem, Solu-
tions of this integrel equetion were obtained by Birnbaum by
means of numerical methods restricted, nowever, %0 a far %oo
small range of values of the important "reduced frequeacy!
peraneter which was introduced by him, In Wagnerts work
atteation is focussed on transient problems for which the
irtegral egquation of the problem is solved by series devel-
opments, Both authors deal only with the motion of a rigid
straight—line profile, ‘
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Subsequently Glesuert (reference 5), on the basgis of
Wagner'!s work, obtains an explicit solution for the casc
of a simple harmonic motion of a rigid profile, This solu-
tions depends on certain definite integrals which are func~
tions of ths reduced frequency paresmeter, The definite
integrals are eveluated numerically in Glauert's paper for
stil1l too small a range of the resduced frequency paramneter,

In 1935 and 1936 Theodorsen (reference 6), Cicala

reference 7), Zllenberger, and Von Borbely (refersnces

8 ond 9), and Kussner {reference 10), independently nnd
Publishing in this chronological order, gave the solu-
tion of the two-dimensional problem for arbitrary motion
and deformation of the airfoil and obtained explicit ex-
pressiong for air forces and moments, They also found
that the definite integrals occurring in Glauert's svecial
and tneir own general solution could be expressed in terms
of certain tabulated Bessel functions of the reduced fre
quencey parsmeter,

Modified derivntions of these results and applicntions
have subsequently been published by Garrick (reference 1l1),
Von Kfrudn and Sears (reference 12), Dietze (reference 13),
Sehwarz (reference 14), S8hngen (reference 15), and others,

Approximate solutions for the two-dimensional motion
of a rigid profile in a slightly compressible fluid have
been given in 1938 by Possio (reference 16},

An acocount of the work regarding the effeect of sponwise
variation of the flow {(thrse-dimensional theory) may be sub—
divided into two parts,

The first part incliludes investigations having the pur-
pose of improving lifting-line theory for stationary motion
on the basis of various formulations of lifting—surface
theory, Workers in this field have been Blenk (reference
17), Burgers (reference 18) Von Kérmén (reference 19),
Schlichting (reference 20), Fuchs (reference 21), Bollay
(reference 22), Wieghardt {reference 23), Kinner {reference
24), and Xrienes (reference 25),

The second part includes investigations having the pur—
nose of obdtaining generalizations of lifting-line theory - -to
problems of nonsgtationary motion, Attempts of such general-
izatlong on the basis of vortex—~filament considerations were
made independently by Oicala (references 26 and 27) and Von
Borbely (reference 28), A study of the special case of an
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infinite airfoil with uniform chord, undergoing bending
deformations varying sinusoidally in the dlrection of the
span is due to Sears (reference 29), Results based on the
theory of the accelération potential were glven dy Kussner
(reference 30), The case of a rigid airfoil with elliptical
plan form was investigated by Jones (references 31 and 32),
The author believes that all these attempts contaln assump-
tions, basically or analytically, which may lead to consid—
erable errors in the determination of the aerodynamlec span
effect, Thisg is discussed in the body of the present paper,

Lastly, mention is made of two general formulatlons of
thin-airfoil theory by Prandtl (reference 33) and Kussner
(reference 30) whereby an integral equation 1s obtained for
the distribution of pressure over the alrfoil, Since, ac—
cording to the equations of motlon for a nonviscous fluid,
the pressure may be thought of as the potential for the
acceleration fleld this approach has become known as the
acceleration—-potential method, An important point of this
method is the avoidance of the eXplicit introduction of the
trailing surface of velocity discontinuity ("tralling vortex
sheet"), It is felt, however, that nonetheless this method
possesses serious disadvantages when applied to prodblems of
nonstationary motion, compared with a method making use of
the velocity potential, 1In this connection it is the authorts
opinion that the failure of Birnbaum (reference 3) to obtain
a complete solution of the two-dimensional problem is largely
due to the fact that o method was used by him which is iden-—
tical with the two-dimensional form of the acceleration po—
tential method,

The present paper 1s composed of three parts, In part
I the known fundamental differential equations and boundary
conditions of thin airfoil theory are rederived, On the
basis of these equations the boundary problem for the veloc—
ity potential for a slightly compressible fluid is formu-—
lated, In this formulation any refersnce t0 the theory of
vortex motion is avoided by means of a simple symmetry con—
sideration,

In part II an integral equation is derived for the chord-
wise conponent of the velocity of the fluid at the airfoll,
restricting attention to the case of an incompressible fluld
This integral equation has the important property that its
kernol 1is the same for problems of stationary and nonstation-
ary notion, 1In contrast to what occurs in the integral equa-
tion for the acceleration potential, It is shown how the
integral equation odtained can be transformed, by integration
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by parts, into a form equivalent to the Blot—Savart theorem,
It may be mentioned that o clarification is gained regarding
the use of principal value definitions for the Iintegrals
oceurring in the different forms of the integral equation

of the problen,

In part III the integral equation of lifting-surface
theory 1s used to establisk a theory for the nonstationnry
airfoll wvhich is a generalization of lifting-line thaory
for %he stationary airfoil and for which the name of 1liit-—
ing-strip theory is proposed, This new theory, which in-
cludes the known two—dimensional theory for the nonstation-
ary airfoil as well as three—dimensional lifting-line theory
for the stationary airfoil as special cases 1s belleved to
be the first correct theory of this kind, It permits detewr—
mination of the aerodynamic span effect for alrfoils of not
too small aspect ratio in a manner which is a combination
of the known procedures in the two—dimensional theory for
the nonstationary alrfoil and in the three~dimensional theory
for the stationary airfoil, Bxplicit expressions are given
for section 1ift and section moment in terms of the circu-
letion function which for any given wing deflection is %o
be determined from an integral equation which is of the tIpe
of the equation of lifting-line theory, The calculations
may be extended so as to obtain an explicit expression for
the aileron hinge moment,

This paper forms part of n project of the Department
of Mathematics 2t Massachusetts Institute of Technology
made possible by financial assistance from the National
Advisory Committee for asronsutices,

The author wishes to express his appreciation to Prof,
H, B, Paillips, head of the Department of Mathematics at
¥,I,T., for relief from part of hils regular dutiee ln connec-
tion with this work; to Professors H, Relssner, M, Rauscher,
and P, B, Hildebrand for helpful discussions on the subject
of the paper; to Prof, Rauscher also for the criginal sug-
gestion to study the problem of the aerodynamic span effect,

LIST OF SYMBOLS

i velocity vector, giving the differsnce of fluid
velocity and velocity of flight

T velocity of flight ("undisturbed" velocity)
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U, v,
P+ Po
PO)
P+ Py
pco
X,Y,%

velocity components
pregsure

undisturbed pressure
density

undigturbed density
Cartesian coordinates
time

Inplicit equation of the alrfoll surface:
F(X,Y,Z’T) = 0

explicit equation of the ailrfoil surface:
z = H(X,Y,T)

veloclty of sound in undisturbed flow

region occupied by projection of airfoll surface
on X,Y — plane

X—-coordinate of trailing edge of airfoil regilon

dimensionless Gartesian coordinates, x = X/b,
T =7Y/b, z=3/b

reference length, for airfoils with uniform chord
identified with the semi-chord

dimensionless time, t = wT
reference frequency

dimensionless explicit equation of airfoll surface,
h = H/b

- >
dimensionless velocity vector, U = U/[U,|
. 1 .
dimensionless pressure, P = P/Epayaf
"reduced frequency! parameter, k = bw/Ue

Mach's number of the undisturbed flow, B = Uwn/a
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Xt
1dy

ma.y

4y

MY

¥—-coordinate of tralling edge of airfoil region
dimensionless alr force associated with strip 4Y°

dimensionless moment of air force associated with
strip 4Y

air force associated with strip d4Y, L = (ZQ”q»nb)l

moment of air force associated with strip 4V,
M = (29=° U;Ebz) m

velocity potential

amplitude function defined dy h = eit hk

defined by b = eit ¢k

defined by p = el Py

¥~coordinate of leading edge of airfoil region

wake region, being the semi-infinite strip in the
X,y—-plane extending from the trailing edge in
the direction of %the main flow

region of X,y-plane which is not part of airfoil
and wake reglon

circulation function defined by
Xt
1 O x,y,+0)
- T = ax
2 0x
x1

chordwise fluid velocity component at airfoil,

u = ddpd x, ¥,40)
° dx
defined by I' = ei% Iy

normal fluid wvelocity component at airfoil,

w, = (acbk( :;;y, Z)>z=°
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In

tx
My

S

y*

a symbol designating various integrals in the
course 0f evaluation or transformation

defined dy elt Vi
defined by m = el my

ratio of seml-span and semi-chord for airfoil
of rectangular plan form

dimensionless coordinate defined by y* = v/s = ¥/sb

a sign designating quantities of the two—-dimensional
(section-forece) theory

s function defined by equation (133)
a function defined by equation (135)
modified Bessel functions of the second kind

Jz Bessel functions of the first kind
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I,~ THE BOUNDARY PROBLEM FOR THE VELOCITY POTENTIAL

IN NONSTATIONARY THIN-AIRFOIL THEORY
FORMULATION OF THE PROBLEM

Teglecting finite thickness and finite angle—of-attack
effects, thin-airfoil theory treats wings as almost flat
plates, possessing no thickness, Flow of an ideal compres—
sible fluid is assumed, the uniform velocity of which is
disturbed by the presence of the airfoil, which is only
slightly inclined against the direction of the undisturbed

velocity, The velocity change ﬁ caused by the presence
of the airfoil is considered small compared with the un-

disturbed velocity ﬁg and the changes in density .and
pressure, p and P are considered small compared with the
undisturbed density and pressure g, and F,, On the basis

of these assumptions a linearized form of the problem is
obtained,

Before linearization the differential equations of
the problem are the EBuler equation

T+ T > S ad (P+P
—-<--—--—-°-°2+(U+ G, )egrad (T+T,)=- E22 ( %) (1)
oT P+ p,
and the equation of continuity
~ + -
fiﬁgaﬁel + div [(p+-ﬂ») (T+T,)] = 0 (2)

As boundary condition it is prescribed that on the
surface of the airfoil the normal component of the fluid
velocity equals the normal component of the velocity of
the eclement of the airfoil with which it is in contact,
Ir »X,¥,2,T) = 0 is the equation of the surface repre—
senting the airfoll the boundary condition has the form,

P(X,Y,2,7) = O iz-;.' + (U+ Uy)egrad F = O (3)
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Pormulation of the conditions at infinity and of the con~
ditions along the edge of the airfoil surface 1is postponed
until after the problem has been linearized,?

-
The undisturbed velocity Uw may be taken as parallel
to the X-—axis, so that

-~ -

= U i (4)

(-] (=]

where 1 rTepresents a unit vector in the X-direction,
Phe airfoil surface is assumed to lie very nearly in
the X,Y-plane (fig, 1) and its equation may be written as

F=2- HX,Y,D) =0 (5)

The assumption of small disturbances 1s equivalent
to the following order of magnitude relations, for the

.veloclty changes,

~ < _B-E—-I
Bt Z= o (6)

FPor the slope of the wing surface,

cH (o)
—_ < 1, —_—< 1 7
oX oY (7)

The condition of small density change 1ls

P = P, (8)

permitting tke linear pressure change density change re-—
lation

p=——2_-P (9)

1The stationary problem (d/3T =0) in its general form
has beon discussed by R, von Mises in a paper given before
the American Mathematical Society in April 1942,
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where

_ 7 ap \
* =\ . (10)

is the sguare of the velocity of sound of the undisturbed
flow,

Introducing equations (6) to (10) into the differential
equations (1) and (2) and neglecting terms small of higher
order leads to the following linear equations,

_?ﬁ + _I_L.grad T=uot grad P (11)
6T P
g% + p_ div T+ div (pﬁé) =0 (12)

-~
while the boundary condition (3) becomes with grad Z=k
where X stands for a unit vector in the Z-direction,

- %E + Tek - ﬁp.grad E=0 (13)
T

In view of the fact that the airfoil surface lies very
nearly in the X,Y — plane 1t is permissible to satisfy
this condition instead of at the surface itself at the
projection of the surface onto the X,Y-plane, Denoting by

R, the region occupisd by the projection of the airfoil

surface, which will henceforth be called the airfoil region,

and introducing for grad H its value i EE*'E of

oxX Y
writing W for the Z—component of the velocity, the
boundary condition takes on its final form

and

o . d3H dH
Z =0, X,Yin BRg; W=t Ue 22 (14)

The region R, 1is to be considered as the limit of

closed surfaces surrounding R, the boundary condition
(14) holding on both sides, 2 =0,

Concerning the shape of the region R, the restriction

is made that straight lines having the direction of Uy,
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intersect its boundary either in two points, are tangent to
it, or are entirely outside,

In addition to the differential equations (11) and (12)
and the boundary condition (14) the fundamental condition is
imposed that along the trailing edge of the alrfoll ths ve-
locity remains finite (Kutta-Joukowsky condltion)

-
X; (¥) = 03 U finite (15)

It should be remembered that this condition is motivated
in the following way, Experiments show that for asirfolls of
finite thickness with rounded leading edge and sharp trailing
edge the affect of viscosity manifests itself in such a vay
that the flow pattern is quickly developed into very nearly
the same as that for an ideal fluid with the condition im-
vosed that the velocity remains finite at the trailiag edge,
which ig the only place where it could mathematically trecome
infinite, Oonditions for the existence of this close connec—
tion betwecen viscous and ideal fluid flow theory involves
1imits on the thickness—~chord ratio of the -airfoil sections
and on the magnitude and direction of the undisturbed veloc—

ity ﬁa, which are satlsfied for conventional airfoils with
angle of attack below the stalling angle and velocity of
flight not too close to the veloclty of sound,

No condition is imposed in thin-airfoil theory on the
velocity at the leading edge, A sharp leading edge 1s con-
sidered as the 1limit of rounded edges for which the velocity
at the leading edge becomes, in general, infinite, To the
extent that this happens, llinearized thin-airfoll theory
must be considered inconsistent, The excuse for permitting
such inconsistency is furnished by the fact that it is re—
gstricted to & zone of small width adjacent to the leadiag
edge, This makes plausible that the effect is insignificant
go far as it concerns the caleulation of the resultant forces
and moments which the flowing fiuld exerts on the airfoll,
{(In the two—dimensional stationary theory this has been con—
firmed by comparing the results of the linear theory with
the known results of exact theory,)

Gonditions at infinity are undisturbed flow far in front
of the airfoil — that is,

x:—::g; ?J‘-_-O P::O (16)

while, as regards conditions far behind the airfoil (X=+w)
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the omission of the viscous terrs in the Buler equations is’
in general, responsible for a persistence of the disturbing
influence of the airfoil,

DIMENSIOWLESS FORM OF THE EQUATIONS OF THE PROBLEM

Before proceeding further it is convenient to make the
system of equations (11) to (16) dimensionless, Dimension-
less coordinates are introduced by putting

X 4
x=3: ',Y=-%, z=".; (17)

where b 1s a reference length which in the two-dimensional
theory will be identified with the semi-chord of the airfoil,

Dimensionless time iz introduced by putting

t = T (18)

where w 1is a reference fregquency which in the case of
harmonic oscillations will be identified with the frequeney
of oscillation,

A dimensionless camber surface equation is introduced
by putting

h = (19)

ol

Dimenslonless velocity and pressure changes are intro—
duced by putting

. _ 0
U B e
o (20)
P
P = 3 (21)
'?w'PooUca

When equations (17) to {21) are introduced intoe the
differential equations (11) and (12) and into the bound—
.ary conditions (14), it is found that it is convenisnt to
define the following two dimensionless parameters,
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(22)

(23)

™
fi

wb

Ueo

U
a

Mhe "reduced frequency! parameter k 1is of baslc importance
in the theory of nonstationary motion, The pesramaster B
represents Mach!s number of the undisturbed flow, %the ratio
of the velocity of %he undisturbed flow and of the veloclty
of sound in the undisturbed flow, .

The differential equations and boundary conditions have
now the following form, if use is made of the relation,

p/Py = % pB2

3, oF 1

T g gTee P (24)

1 . op op .
el —_ —— éai = 0 25
) > B (F St + oy + v u ( )

s oh oh

z= 0; x,y in Ra; w =15k <% + = (28)
z = 05 x = x4(y); ® finite (27)
X =—oj u=0 p=0 (28)

The analytical part of thin—-airfoil theory conwuists
in solving this esystem of equations (24) to (28) so that
expressions may be obtained for forces and moments exerted
by the fluid on specified portions of the airfoil, These
forces and moments manifest themselves through discontinu—
lties of pressure withlin the airfoil region R,, A conven—
ient notation is to write p,; for the pressure on the side
z =+ 0 of R, and py on the side z = - 0 of R,.

Denoting by 1dy and mdy dimensionless forms of
forces and moments associated with strips dy of the air-
foil, a convenient way of writing forces and moments per
unit of span length is
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X

f 8
v (ys x,, x2>=-f§j [y (x,¥)=pulx,¥)] ax (29)
X
2
m(y; Xoy Xy, Xp) = -Z—;[ (x—=x_) [py(=,7) = pu(x,y)] dx (30)

-1

where from now on the variables y, %,, X, im 1 and m

will not be written unless necessary to avoid ambiguities,

The relations between dimensionless forces and moments
and the corresponding actual forces and moments L and i
are established by means of equatioans (21) and (17),

L= (20, UPD)1 © (31)

M

(2pe Uy D°)m (32)

REDUCTION OF THE BOUNDARY PROBLEM TO A

PROBLEM FOR THE HALF SPACE

So far the problem has been formulated as boundary
provlen for the exterior of an infinitely thin closed sur—
face, It may be observed, however, that in equations(24)
to (28) of the problem no distinction occurs between the
portion of the fluid "above! the airfoil surface and the
portion of the fluid "below!" the airfoil surface, This
indicates that the flow must possess properties of symmetry
and antisymmetry with respect to the x,y-plane, ig the
sense that the components of the velocity vector w and
the pressure p are either even or odd functions of the
z—coordinate, The boundary eguation (26) which is to be
understood as holding for =z = 0 indicates that the ve—
locity component w 1s an even function of 2z, From the
z—component equation of equation (24) it follows then that
also 0p/dz 1is an even function of z and consequently; p
an odd functlon of 3z, PFrom the remaining component equa-—
tions of equation (24) it follows then that also the velocity
components u and v are odd functions of =z,

The fact that the pressure p is an odd furction of =z
in coanjunction with the fact that p is continuous within
the fluid indicates that p vanishes over the part of the
¥,y-plane outside the region Ry,
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0; =x,y outside Rz ¢ p = 0 (33)

N
[t}

Combining equation (33) with equations (26) to (28) there
is obtained a system of conditions for the entire x,y-plane
which may then be considered as the boundary of one of the
half spaces, say the half space z> O,

INTRODUCTION OF VELOCITY POTENTIAL

Turther treatment of the problem is carried out here
in terms of a velocity potential ¢, the existence of which
follows from the fact that squation (24) implies

(e B, B g
k - 4+ e ot = 0 34
\ % e/ 0" (34)

Since rot W= O 4in the region of undisturdbed flow, it
follows from equation (34) that throughout, the interior
of the half spaces 2z = 0 and 3z =< 0,

rot T = O (35)

From this it 1s concluded

¥ = grad ¢ (36)

Introducing equation (36) into the continuity equation (25)
leads to

- 1 .2 /7 Op op
T ¢+ =8 {k—=4+—=)=0 (27)
2 \ 0t %

Introducing equation (36) into the equation of motion (22)
leads to ] .

- A
grad (% e + 3;'}— -3 grad ? . (z8)

which is equivalent to



NACA TN Ho, 946 17

1 2 3

- =P =k -+ — 39
2 ? 0% ox (59}

with an additive arbitrary function of ¢ incorporated in o,

Introducing equation (39) into equation (37) furnishes
the differential equation for &,

-] ' \;
v ~ g® <' L2 .8 = 0
b - B k T + =, ¢ (40)

In terms of ¢ +the boundary conditions (28) to (28)
and (33) assume the following form:

N P oh"  oh

z = 0§ x inside Rat — = k —— + — (a1
Y Y 3t ox )

z = 03 x = xg(y):? grad ¢ finite (a2)
z = 03 X = - :'d) =0 (43)

. ., 3 3¢ '

. = 0 tgid R, | ¥k X4+ - =0 44
z x,y outside R, Thiow (44)

To simplify the work from here on the case of simple
harmonic motion is assumed dy putting

h(x,y,t) = hk_(x,y)eit (45)

Because of the linearity of the problem more general solu-
tions may be obtained from the solution for this case by
means 0of superposition, for instance, solutions for tran—
slent problems through the means of Fourier—Laplace inte—
grals, The functions hy may be complex themsselves sO as
to account for phase differences between different hy,

With h given by equation (45a) the potential ¢
will De of the form
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¢ =90, (:r.,y,z)eit (48)

where again ¢ may be a complex function,

Substituting P of equation (46) in equation (40)

2 .. N
T¢k—52<1x+-82>¢k=0 (e7)

Substituting ¢ of equation (46) in equation (39),

it ddN, it
Py © =<ik by + Bx)e (48)

nafp +

l —

The boundary conditions (41) to (44) become

z = 0; x,y inside Ry ! 2 _ ikh, + OBk (49)
0z ox

z = O; x = x4(y)': grad ¢, finite (50)

z =0 T=-x't ¢, =0 . (51)

z = 0; x,y outside R, : ikd, + %E? = 0 (52)

It 1s important to note that equation (52) may be
integrated to

¢k (z,y,0) = ¢ () e ikx (53)

when x and y are outside the region Rge Using eque—
tion (51) it is seen that ¢ vanishes along lines y =

constant which do not pass through the region R, and that
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¢ +vanishes along the part of lines ¥y = constant passing
through R, reaching from x = —» to the leading edge
coordinate xy, Hence if in addition to the airfoil region
R, there is defined (1) a wake region R, being the semi-
infinite strip extending from the tralling edge in the di-
rection of the main flow and (2) a region R, denoting the

remaining part of the x,y-plane, the boundary condition (52}
may be formulated in the following form (see alsc fig, 2)

z = 0; x,y in Rpi P = 0 (54)

—ik [x-x¢(y)]

z = 05 x,y in R_:i:Py = % Pelyde (55)

W

where % Pki.gtands'for the value of ¢, at the trailing.

- edge

A

[} + 0 :
d(x,7,+0) (56)
ax "

1
=Ty =y [x4,7,+0] =
2 .

3}

and uvhere, since ¢k(x,y. + 0)= - ¢(x,5,-0), T = I‘keit

ig the value of what is known as the circulation,

The problem is now t0 determine the solution of the
differcntial squation (47) for the half space z > 0
subject to the boundary conditions (49), (50), (54), and
(55), The notable feature of this mixed boundary probdlen
is that it contains the undetermined function I'y which

has to be found in such a form that the finiteness condition
. (50) is satisfied, . .
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II ,~ THE IWTEGRAL EQUATION QOF LIFTING~SURFACE

THEORY FOR AN INGOMPRESSIBLE FLUID

Equation (4%7) indicates that for an incompressible
fluid ¢, and also 3P, /dx are harmonic functions, The
function ddy/d0x may be represented in the interior of
the half space 2z > 0 by means of its values at the bound—
ary. z = 0 which may be denoted by u,, Dispensing in what

follows with the subscript k this representation is

_§<_bI= 1 uo(g, ‘n) Zz dg dn
dx  2n ‘/Df ( 2 2 Vﬁ313/2 e
L(X—E) + (Y""“) + 2z _j

The kernel
1 z
r(x~-§)a+ (y=n)%+ 22 | '

L J

may be obtained either by way of introducing spherical
coordinates about the point (§,n,0) in the differential
equation for d®9/dx whence a solution possessing the proper
singularity is found by separation of varlables, or by means
of a Fourier integral solution for dd/dx for the case that
u vanishes everywhere except over an infinitesimal area
a¥an where 1t has the value 1/d¢dn,

To obtain on the left hand side of equation (57) the
correct boundary values u, when 2z = O the integral must

be defined properly, One such definition is obtained in the
following way, Write equation (57) in the form

%f =JC/‘ + L[yﬂ (59)
- By Ra

where R, 1s a small rectangular region surrounding the
point §=x, n = ¥y, and R, 1s the remaining region of

integration, It 1s found that the correct boundary value
Uy 1is obtained from equation (59) when the sides of R,
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and the value of gz are ¢&imultaneously made small in such
a wa tnat the value of 2z tends more rapidly to zero than
the smaller of the sideg of the rectangle R, This result
holds independently of the location of the point x ¥ with—
in R, so that no reason to prefer the principal value of
the 1ntegral — which corresponds to symmetrical location of
X,7 within R; — appears at this stage, The motivation

for working with principal values appears at.a later stage,

The integral equation for wu is obtained by means of
the condition that over part of t Be houndary the values of

the normal velocity ¥p/dz are prescribed, The value of
%/dz 1is determined by first taking :

/ 2
—-'—'—'——'— uo(€ n) ""'[ ~3/a d.Ed'n <6°)
Bxaz .

oz \ (x— 8 +(y-n) +z° It

where it 1s legitimate to differentiate inside the sign of
integration as long as z > 0, The value of oP/dz 1is
obtained by integrating equation (e0) with respect to . x,

This integration is facilitated if use is made of the follow—
. ing identity,

.3
S (B)em () 2 TL (- )% (yen) 39 (61
e e o e e D e e\ = r = + (Y +
O ACS) 5 (3 ' 14 y=n)Tez® o (61)

Substituting equation (61) in egquation (60) and integrating

from =x = —», where 3d/dz = 0, there follows

o _ 1 xt— ¢
0z 21 JrJF to < 2

z/2
(X' £) +(y—n)2+z2} -0

(y=-n) ax!

X
578 | pdtdn

r= | [ -
| {(:u— 0%+ (y-n)? + 2%

and after evaluation of the inner integral,
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JFJ[ u°! Al s/a

qu-a) +(y—n) 42

J

3 f. (y—n) (x—£¢) y—n
RN
v

; = }dﬁdn (62)
i 2 & 2 2 2 =2
L(y-n) +Z]ﬁ(xhi) +(y-n) +z F (y—n) +z VJ

In this integral the region of integration consigts of the
airfoil region Ry and the wake region Ry only, as equa—

tion (54) indicates that wu, vanishes in Ry,

To obtain the integral equation for wu, the boundary

conditions (49), (54), and (55) have to be used and the
. limit of the integral (62) as 2z tends to zero has to be

" taken, In principle the simplest procedure would be to
evaluate the integral first for non-vanishing 2z and then
make 2 = 0 1in the integrated expression, However, inas-—

much as the integrand in equation (62) becomes of 51mp1er
form wthen in it 2z 1s made equal to zero it i1s desirable

to define the process of integration in equation (62), or

in an equation derived from it, in such a way that the
correct result is obtained if first z 1ig made egqual to
zero and then the integration is carried out, This, as will
be shown, 1is possible without transformation as regards the
first term in equation (62) while the second term has to be
brought into a different form, in order to avoid singulare
ities of too high order,

In this transformation two different cases are disg—
tinguished: (1) the case for which the leading edge is
strelght and perpendicular to the direction of the main-
flow, (2) the case where this is not so, In the first
case the second term may be integrated by parts with re-
spect to n and since in view of equation (54) u
vanishes at both ends of the n-integration interval
there follows from equation (£2)
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x— &

[t} 1
2 ”; ff Lu {(x-m%(y—n)ﬂza}”g

-5_—_

+ —— =~
on (y=n)®+z® {Ex_g)a+(y—n)2+22}§"r

In the second case the transformation of equation (82)
involves first integration by parts with respect to ¢,

i1 L) x1
- - o 2 -~
g o 3 o
='<L¢o _63; i . 'J} —f ¢o —a—g-s; ! .-a] d'E
e x x -
1 1

From equation (54) follows that in the integrated part .9,
vanishes when ¢ = xy while for £ =% the factor of ¢0
vanishos, Thus instead of equation (62) there may bde
written.

x~ &

r
) 1

——— ZZ - u rd >
dz anf ° «;(x—§)2+(y—n)2+2?3

o) — b x —
y- ° ¢ + 1){lataq

o

—, = | ——— .
° oy | (y=n)2+z2 2E -;(K-E)a+(y-—'n)z+zzr"1 )
. 4

In thls expression the second term may be integrated br
parts with respect to m and, writing d¢,/on = Vo

and observing that the integrated part vanishes at the
limits, there follows
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°p _ 1 Fu X— ¢
S; ST E; ° - 2 z 2 3/3
Ra+Rw -»’\(x*’é) +(Y—-T\) +zj
+ v y-n dtdan  (64)

[d =~ -
® (et ) P lymm) B "L

It may be noted that an equation equivalent to equation

(64) could elso have been obtained by applying the Biot—
Savart theorem with a vortex sheet occupying the regions
Ra and RW in the x,¥y-~plane,

The integral equation of the problem is now obtained
by substituting either in equation (63) or in equation (64)
the boundery conditions (49) and (55), There follows, from
equation (63),

X,¥ in R,

2m Z->0
8,

I (x— £)
JFJr Yo 7 2 2 = 8/2
R i(LE) +(y-n) +3z j

4
wolx,y) = = L lim %
!
L

oug y— 1 x - ¢

on (y—n)=+z={ -~ S 1/8
{(x—§)2+(y-n)2+z2?
v\ 4

+ 1)|dédn

—-ik[t—-x4(n)]
1 e (x—¢£)
_..é.ikff (n) - o
Ry

{(X—E)2+(y—n)2+z -
J

N~ [

—1i = ikxo B

e . }ig—l T'(n)e xt_‘ (y—-n) x - ¢ -

+ dc : %-1:1 dtdn\(65)
.

(7—n)%+ 2° (= £) 2+ (y—n)2+z
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Equation (65) is valid when the leading edge of the airfoil
is a straight line parallel to the y—axis, From equation
(64) follows, without restriction concerning the leading
edge curve,

x,7 in Ra H
L [
wolx,y)== == lin l(]lf Uy
21 I ﬁ
Pe

y—-n B

PEE n3/8
(o 0 gom) i)

x— ¢

2~3/82

{(x—i)a+(y—n)2+z f

dédn

By |

" ﬁ;(x- 0% (7=n)"+s® §

+
W+

a ikzy T (yom) } 1

+ a(l‘e > ~ . s/ai dEdn (68)
4 (= ﬁ)a+(y*n)a+za} 3
- J

In both equations I’ is defined, according to equation (56)
by

$
1 %
T = [ g (e, at L (em)
X
bccording to equation (50), the additional condition is
imposed that

uy (€4, m) finite (68)

Bquation (65) has the advantage that in it only wu, occurs,

but the dlsadvantage that 1ts applicadbility is restricted
to airfoils with leading edge straight and perpendicular
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to the direction of the main flow, Equation (66) is free
of this restriction, but contains the two unknowns wu, and

vo (which, however, are both derivatives of the same func—
tion ¢0). The developments of part III of this paper are

based on equation (65) but it is certain that equivalent
results can be obtained on the basis of equation {66),

So far as the integral equations (65) and (66) are
concerned it is possible to put =z directly equal to zero
in some of the wake integrals as the variable =x 1s alwvays
exterior to 2Ry, This is not the case with the integrals
over the airfoil region where the integrand hecomes infinite
when z = 0, £ = x, y = n, The order of this infinity is
most easily recognized if cylindrical coordinates aboul
the point x,y are introduced, that is,

E - x=p cos 8, -y =p sin 8, dfdn=pdpdd

whence, for instance,

(x-¢) dtdn — cos 8 p°dpad
r . ~B/3 2 z) °/°
i(x—-E)2+(Y-n)‘+zaj {p T }
g ~

On the basis of this formula the integrale over R, and
R, could be considered as composed of the following two
regionst (1) a small circle with center p = 0, (2) the
region minus the small circular region, It 1is possible to

show that limL/“‘/n has the value which would also be ob—
Z~»0

tained by execluding from the region of integration the small
circle, assuming in the integral over the remaining region

z equal to zero and by finally letting the radius of the
excluded circle go to zero,

For the applications it is, however, more convenient

to subdivide the regilon R, in a different way, This nmay

be explained in detaill for one of the integrals occurring
in equations (65) and (66): namely,
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(x— ) ata
- zl—i;%../:/" n‘-s/a = %.Enol (69)
°d L (2t) 24 (y—n) +zj

The integral I may be written as

z
r\
= J + (70)
R, R, :
where R, is & small rsctangular region surrounding the point
¢ = x,v = n in the ¢,n-plane and R; the remainder of

the alrxoil region R,., In eguation (70) R, may be made

so small that in it the function wu, changes very little,
so that

ff = [uo(x,y)+6,1]f/‘ ~ .(x—g) dgdna =7 (71)
R Y §<x—z> #(7=n) +z}

With R, thus determined make =z s0 small that

wo(€,m) (X—-i) af dn P u (¢, n)(=-¢ ) dn N
ff 3/2=-JJ - 2 2~:5/a+ 52 (72)
“L(x-ﬁ) +(y—n) +z f r, 7 (=£) +(y-n)
fhus
(x—¢) dtd
= [uq(x, Y)+51]ff i 7T
(x-i) %4 (y-n) +2 é\,
ugf , )(x— YdE d
ff ot 2 : ﬁ;‘/a... 5 (73)

{(X-E) +(y-—ﬂ)2}



FACA TN Fo, 946 28

Since in this definition 2z approaches zero automatically
as the size of the rectangle R, shrinks, there may be
written

Ip =1im 1, =1lim I
7 -0 R.-0

(x— £) agdn .
uo(xY)limff %7
L(x—- £) +(y—n) +2 j’

. 11mff ug(tsn) <x—z>§£dn (72
—>0 {(x-a +(y=n) j

The most convenient form of I, 1is obtained if the:

shane of the rectangle R, 1is chosen such that the first
integral in equation (74) vanishes. This is the case waen
the rectangle R, is symmetrical about the line t = x,

since the integrand is an odd function of § —x, This is
the scme as saying that the gap in the second integral is
symmetrical so far as the f—integration is concerned,
which is equivalent to saying that the principal value
of the integral is taken in carrying out the integration
with respect to £, This may be indicated by writing

ff uO(E,n) (x _-Es)‘afa d fdn (75)
i(x— €) +(y—~n) , \

In the same way it can be shown that the simplest form of
the remalning singular integrals in equations (65) and (65)
is obtained by making the rectangle R symmetrical about

1
the line ¥y = n — that is,

y - x =
1inm - Bauo - g ’ 1/2+ 1) éfdn
Z—>0 .JRa N (y—n)®+3® {x—. 3) +(y—n) +3 }
= .-[\ oug 1 ( x — ¢ +
) 1lata 76
J f Bn F-n /e s e

5 -f(x—~ £) +(y—-n)f
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and

A p o volEn)(g=n) dabdn f
lim y; '
Z—>0 /f I‘( aT’s a
Rs L

x8) %+ (y=n) 2

vol t,n){y—n) dfdn |
"SI (7en
. a2 a2
o) =0y

As in one integral gap symmetry in the f~direction and

in the other integral gap symmetry in the n—direction is
_desiradle, it is most convenlent to have in both integrals
gap svymumetry in both directions, With this understanding
the integral equations (65) and (66) may be written

x,y in R, 3

uo(ggn) (x"g)

_ 1 N '
Yo =~ ;; ‘f L%pﬂ (( 2 ( a\s/a

oug 1 X £ 7

+ 1 dtad
on  ¥y-n L{}x_g)a+(y-n)a}1/ n

—1k(¢—x5(n))

, ik f I(n)e ! (xt)
4 u%n -{(x—ﬁ)a+(y_n)81 3/2

J

éa[reikxt]é—ikg .
5 =0 ' x =t + ;] dtan (77)

¥ - n 2 al1/2
REURIC S
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or
X, ¥ in R H
uy (€, n) (x-£)
Wo [ - %ff 3/2
-{(x—i) +(y=n) }
. vo(ﬁ,n) (y-n) af an
{<z—z>2+<y—n>3}°’a

..ik( E-—xt )

~-ikT{n)e . (z—¢)
J/i/n T(&—E) +(y—n)a%/a

a ikx ‘ ~ikf
— t (y—
+ 8n [ ° ° Y ?l]\dﬁdn (78)

f et 2 (e a]s/a
(==t t3=n)"] J

In equations (77) and (78) I' is defined, as befors, by
eguation (€7) and wu, is, as before, subject to the con—
dition of finiteness of equation (68)

In what follows equation (77) will be specialized to
the following cases (leaving deductions from eguation (78§)
for future work):

(1) The two—dimensional theory, where no new results
are obtalneds

(2) The stationary theory for airfoils of rectangular
plan form from which in & manner similar to that used by
Burgere (reference 18) there is obtained Prandtl's equation
of lifting-line theory, Also obtained are expressions for the
spanwiss variations of total moment and alleronr hinge moment
which are equivalent to earlier, apparently not well known,
results of Glauert, .
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(3) The nonstationary theory for airfoils of rec—
tengular plan form, Here a tvhory is obtained for the
aerodynamic spen effect which 1is a generalization of tae
Praundti theory for the stationary airfoil and is considered
Just as reliable for the nonstationary airfoil as lifting-
line theory for the stationary alrfoil,

Before proceeding with this program expressions may be
obtained for 1ift and moments in terms of the function o,
which is the function to be determined from the form of the
integral equation of lifting-surface theory as given in this
paper, Substituting in equations (29) and (30) the valwe of
p from equation (48) and taking into account that pL=- Py
there follows first

X

A 2 o
Wy x,,%5) =f (ikcbk + -%—-—-)eit ax (79)
x
hid
and :
X5 56 .
m{rixg,X,,%Xz) = \/P (2—x4) (ik¢k+-?;5>eit éx (80)
x
Xy '
Writing .
1= Iy et m = my elt (81)
there followse
X2
1, = f (uccbk + u,) dx (82)
. X3
and
X2
my, = g/P (x—xo) (1kdy + uo? dx (83)
X,

By integration by parts equations (82) and (83) may bde trans—
formed into expressions depending only on .

X

Yo .
'.'{1 H x?..
1k(x1,x2)=ik-{(xg—xl)L/P uodx4-/p (xg~x)uodx}4L/Puodx (34)
< xl
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+ / (x~x) .:..c_z.;_ x°> ug dx}+ (x—x4) u,dx (85)

From equatlons (84) and (85) there follows in par—
ticular for

1(1) the section 1if% (xl = X}, X5 = xt)

Xt

= ik f (x4—x)u, dx + / u, dx (86)
x-l ,
(2) the section moment about x4 (x Xy, X5 = X)
Xt xt
XE+X ' .
mkgxo) = ikk/P (x4—x) e - X, ) updx + (z—x,)uo dx (37)
Y x X1

(3) the aileron hinge moment (%, =x5=¢, X = Xt)

e
a, (c,e) = ik {% (xt_.c)BJ/q v, dx
X4 E :
+f (xt -x) f—%ﬁi-—c)uo dx}
© x4 ' '
+ J[’ (x-c) uy dx (38)
c

It mey be noted thet equations (86) and (87) coincide with
expressions previously used by Glauert (reference 5) .
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III.- LIFTING-STRIP THEORY FOR THE NONSTATIONARY MOTION

OF AN AIRFOIL OF FINITE SPAN

In what follows a theory is developed for the alrfoil
of finite span subjected to nonstationary motion whick may
be considered as a generaligation of lifting-line theory for
the stationary airfoil. No use is made in this development
of the vortex filament motion. The starting point of the
developments is the integral equation of lifting-surface
theory in the form of equation (77). In this integral equa-
tion simplifying assumptions are introduced of which it is
apparent that they are of the same nature for the stationary
and for the nonstationary airfoil, Thus, the range of valid-
ity of the theory vput forward here coincides with the range
of validity of lifting-line theory for the stationary airfoil.

While derivation of the results for the wing in non-
uniform motion depends on the same order of magnitude rela-
tions regarding aspect ratios as the derivation of the re-
sults for the wing in uniform motion, the steps involved in
the solution of the uniform-motion case are naturally of a
much simpler nature than the steps involved in the solution
of the nonuniform-motion case.

The resuvlts obtained here consist in explicit expres-
sions giving 1ift and moment intensity at every section of
the span for any deflection of the wing in terms of the cir-
culation function which has to be determined from an integral
equation of the nature of the lifting-line equation. If the
assumption of two-dimensionality is introduced into the re-
sults they reduce exactly to the known results of the two-
dimensional theory.

No expressions are as yet given for aileron hinge mo-
ments. Such expressions may, however, be obtained from the
present results.

Also, airfolils of rectangular plan form only have for
the time being been considered, for the sake of perspicacity.
It is certain that equivalent results can be obtained for
tapered airfoils.
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THE INTEGRAL BQUATION OF LIPTING-SURTFACE THEORY
FOR AN AIRFOIL OF RECTANGULAR PLAN FORM

Taking as airfoll region R, the rectangle bounded dby

the lines =x = %1 and ¥y = %8, +the basic integral esquation
(77) becomes

gxl ilaéylss}

v = 1 uo(E.ﬂ)(x ~ &)
0 - - D
21'1' {(x - + (y T]) ?‘78

+ auo 1 X - g
N ¥ =M (x- )+ (y - MZHT3
- J

ff; -1kt % I‘('ﬂ)ix(; .g)m"}‘”e

+ 1)\ atan

\

L
L r 7
+ &0 ni x - ¢ 1 1 atam (89)
y-.

(x = )%+ (y = 1) }”2 J

with, according to equations (67) and (68)

% T () =f‘ u;g (E,n) at (90)
-l
ug (1,M) finite y _ {o1)

Before considering the three-dimensional problem of the
nonstationary alrfoil this equation is specializsed for the
two-dimensional case and for the three-dimensional stationary
case and some results are established pertaining to these
cases whieh 1t is convenient to make uvse of later on.
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THE INTEGRAL EQUATION OF TWO-DIMENSIONAL THEORY

The airfoil region has now the form of the infinite

strip x| €1 and the assumption of two-dimensional flow
1s expressed by

wolx,¥) = wy(x), wolk, M) = uy(t), T(NM) constant (92)

Bquation (89) reduces to

1
wols) = - L &5 wol®xo#)
%;{*é {(x R
VT ; erikl(x - £) atan  (93)
TR e
*n [i T - F 4 (v - M

The integration with respect to T can be sarried out, leav-
ing

1 > ikt
1 full) ixelk e
wo(x)_-;f:x“gdﬁ-i- = F[x_gdﬁ (94)

where I is given in terms of u,, by equation (90) and
where the finiteness condition equation (91) has to be ob-
served, Equations (94), (90), and (91) can be solved ex-
plicitly for w,, +the result may be substituted in egua~
tions (86) to (88) for 1ift and moments to obtain the welle
known Theodorsen~Cicala-Ellenberger~Kissner results. These
same results will appear as special cases of the new theory
taking account of the aerocdynamic span effect.

THE INTEGRAL EQUATION OF THREE-DIMENSIONAL STATIONARY THEQRY

¥ith

k= Q
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equation (89) reduces to
wolx,y) = - —~ J~ uo(f, ﬂ)(x - &)
) j[ Qr (x - )%+ (v - ﬂ)<}3/a

aug 1 " ,Jf - g
an ¥ - M ,{(x - D%+ (v - n)aj"_“a

+

+ 1 a tan (95)

while equations (90) and (91) remain unchanged.

Approximate solutions of equation (95) for airfoils
without camber for which wg = o = constant have been ob-
tained by Blenk (reference 17) and Wieghardst (reference 23)
with the alm of supplementing Prendti's lifting-line theory.
The iaverse problem, to obtain convenient expressions for
Wo whon 1wy 1is given has been dealt with, using Fourier

ingegrals, by Von Karman (reference 19) and Fuchs (reference
21 ).

It appears that the task of obtaining quantitative so-
lutions of eguation (95) giving reliadle corrections for the
rosults of lifting-line theory is of considerable difficulty
and requires work going beyond what has been accomplished by
Bleak and Wieghardt.

Lifting-line theory may be obtained from equation (¢5),
gubstantially according to Burgers (reference 18), in the
following manner.

Substitute in equation (95) as new variables

y¥* = %' T* = Is} . (96)

which changes equation (95) into,

u (€, n*)(x - §)
wolx,y) = jfjf — <37%

\ J(x - BY® 4 g (3% - n*)

*
J 7
IN* g% - M| J(x - E)° + e(y* - n;..)a}_m atan (97)

1
*+ =3

L

! ;
L -
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For sufficiently large 8, practically for .
8> 3 (¢8)
the terms

1
<(x =F)2 + e2(y* - n*)z}’*

have a stecp maximum for  y* = TN* 8o that, roughly, the
malin oontribution to the value of the integrals containing
these terms comes from the immediate neighborhood of the line

y* = N*, In this noighborhood the values of vy and -%%g
|

are thought to change sufficlently slowly 40 permit replac-
ing their actual values by thelr values at y* = T*, If this
approximaetion is accepted cquation (97) becomes

1~
Wo & = :Ljfjr l uel Ly*)(x <t )
211-1-1 ﬂ {(x - E)a + 8 (y* - ) 3 ®
+ 2 %% 1 - : x - £
g® By* y* . M {(x - 1)® & g3(y* - n*)élxla
1 Sugo 1
+ =
§° OMN* y* ~ T*

dgan* (99)

In the first two integrals the integration with reospset
to MN* may be carried out explicitly. Because the main
contribution to the value of the integrals comes from the
immediate nelghborhood of y¥* = TN* the error lntroduced by
integrating from -~ ¢o0 +e insgtead of from -1 to +1l 1is
neglected, (This latter approximation evidently ceases to
be good in the immediaste vicinity of the tip sections
y* = 1, and could not be made were it not for the fact
that wuo turns out to be small near the tip sections.) With
the following values of the relevant two integrels,

f ¢ . /5 = 2
le -{fx -2)°% e ey - ﬂ*){} slx - £F
o, ‘ '

an _
~ > 173
.:i' (y* - ’ﬂ*){'(x D L 'ﬂ*)a}l

=0
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the integral esquation (99) is reduced %o

1
o o1l u (E:Y*) au an*at

T [ . an# y* - T*
-1 -1 el

ahd Lf in the second term use is made of equation (90) there
follows as final form of the approximate integral eguation
of the stationary rectangular lifting surface,

1 1
nJ ox -t 4113:1 anx y¥ - T 4

It may be seen that the second term in equation (10%) gives

the finite-epan correction, while neglecting the sscond term
is equivalent to agsuming two-dimensional flow at every sec-~
tion,

To determine the functions ug and I' wusec 1s made of

a known inversion formula which ie to bPe considered as a re-
sult of two~-dlmensional potential theory. (See,for instance,
S6hngen, reference 34.,) The inversion formula states that
to the relation

1
g(x) = - %f_l-’_ﬂ..). df, f£(1) finite . (102)

x -t

there corresponds the following inverse relation expressing
f in terms of g,

£(x) = = ﬁ'xf‘/l%l e®) 4t (103)

n/ 1+ x 1 ~f x ¢

Applying equations (102) and (103) to equation (101)
in order to solve for ug,

L £~ ~
woter) + 1/5E /T {rttor
-1

1
1 [Tar _ ape &t
amedan* y* -« n*{ x - £

4+




NAGA TN No, 946 ' 39

and with

J‘:/:LE“E _£=-n (104)

there follows

"’-o(x..v*) = - : [j 1= g W‘;(E E’ ) g
1
- _3.__ ar an*
4sf (108)

an* y* - m*
-l

Bquation (105) becomes, by integration, an equation for

1

l = - 1 P arl an*.
y*) = fuo(x FHEIAX = - 4sj InF FE - E

1 /1" -""x‘ /1 + ﬁ wo (£, y*)
* f 1 + 1 - ;- £ aE ax

It is plausible and may be justified rigorously that in the
gecond ferm on the right the order of integration may be
interchanged. Then with

f \/gli-x d"g -t (108)
+ X X -

there follows as integral equation for I' ,

1 .
1 arT an* 1+ £ 107
BTG =-z;uﬁan.« Sl S vetmat G0
el . -3

Since, according to eguation (88)

1, = =T (108)

o i

it followe that equation (107), the integral equation of
lifting~1line theory, determines directly the lift distridbu-
tion in the stationary case,
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In addition to the integral equation for the lift dis~
tribution further results mey be deduced from eguation (108).
Introducing the value of wup, a8 given by equation (105)

into equation (87) for the section moment mg{xs, -1, 1)
there follows

1

(109)

where m@me stands for the value of the moment in the absence

of an aerodynamic span effect. TFrom equation (109) followe
that there is no sercdynamic svan effect for the moment

about the guarter chord point xo = - % (which vanishes for
the straight line profile)- that is,

mo(--l-. ~1, 1) = ﬁo("'l"; -1, 1) (llo)

L probadbly more important result of this nature concerns
the value of the alleron hinge moment which is deflined by
equation (88)., Introducing equation (10B) into equation (88)
gives

1 1
molerc,l) = Bolc,0,1) = —2o [(x - ¢) /=% dxkg"__QE___ (111)
4ne 2 1 + x L ¥* o« T
Writing

nl Y -
f(c) =‘/ (x - ¢) /% =X ax = (1 + 3:}/1 - c®. (%-+ ?) cos * e
c + % 2

(112)

and obmerving egquations (107) and (108), there may be written
instead of equation (111)

g A~

fig{ec,c,1) e f&ole,c,l)

(113)

Bquation (113) indicates that the aerodynamic span effect
for the hinge moment differg from the span gffect for the
1ift and in which manner the twe are related.
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~THE INTEGRAL BQUATION OF LIFTING-STRIP THEORY
FOR NONSTATIONARY MOTION

' The starting point is the complete integral sguation
{89) which may be written in the form

wo x Il o+ Ia (114)

where I3 sebands for the integral over the airfoil region
and Iz stands for the integral over the wake region. The
aypropriate approximation for 1, has been obtained in the

preceding section on the stasionary airfoil. Accordiang to
equation (101)

1 8 |
1. s o LJ 2olt.y) at - _J;_f & an (115)
. : T x - ¢ 4vj 4N y - M
- -8

It remains to obtain an approximation for Iy which
corresponds to that obtained for I,. It will be shown that

sevaral esgsential steps are involved in the derivatlon of
this approximation.

Starting with the exact expression

e & 8 -
1ke -1kt | T{n){x - ¢)

I, = e - ~5 7

2 4 [:{ J-ﬁ(x-ﬁ)a-i-(y-ﬂ)a}sa

O £ .t
v -l G- EF e (y - n)a}.”a
L

the first step coneists in separating from Iy +the value 1Ij:

would possess if the two~.dimensional theory were corresct.
Lccording to equation (94) the value ¢f Is 4n the two-dimen.
glonal theory is

1k P ikt
Iz = 1K T(y)f ° : at (117)
: 1

+ 114 atan (116) -

21 X =

The second step consiasts in writing
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8
r _1 ly - nl
() = 3 memy Lr=3l e (118)

-s

which may readily be verified in view of the fact that
I'(+s) = 0.

With equations (117) and (118) Iz of equation (116}
may be written as

ikp

Ig=13+

kf ik € T(ﬂj(x - ES
jy(x

B7E
1_3 -8+ (v - m?
T'(ﬂ) x - ¢ K + 1 ly - 1l atd
- - 0 n (119)
e T(x*u +'(y-'n>"f7§ x - ¢

A further trangformation is accomplished by the felloww
ing integration by parts

P(ﬂ)iﬂ - = P(n) - n - ¥ /
J/ <x-£> * (z=m® U7 (x-eﬁ(x.-n & (y=m)® 7"
. ]
_Jf r(ni(n - Y)dﬂ
A g)zg(x - s (y-m)

The integrated part of equation (120) vanishes as I' vanisghes
at both limite. Introduwcing equation (120) into equation
(119),there follows

1k [
1 = Iz + i:e JF;%, o~ ikt () / - A zn w3
TT

— (220)

l (x = E)(x - £)° + (y - 1)
1 w8 '
+ 1 E - 4 — - 1 = iZ_:_EL id&dn (121)
vy~ J(x=-)s (v - x - & |7
& J /]

and combining the first two Herms within the braces,
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ikeik o=kt () y - 1l
I = I l -~
2 s ¥ d[’jr y -0 x - £

jl/a
\xx- £) +(y-nazf

x - ¢

[ét an (122)

The next step consists in segarating in equation (122)
the integratlion with respect %o in two parts as follows:

[{-{

Then
I, =I;+1I,+ I (123)
wherse o 8 ¢ |
ik -1k
1, = ke e rm Jg . ly - nl
N 4t gfic ¥ - T x - ¢
{ )3 ( 2 17
L WE - @ +y-1 j atamn (124)
X -
1, oikt iy Jy U Iy -l
y - " x - £
3 3;1/3“
x - ¢

Bquation (124) may be simplified by introducihg a new vari-
able of integration

k(g - x) = A, kdaf = an (1286)
whence ( y o .
ik(l-x : -
et f RO [0 o el
4m s ¥y -1

. L71/2
- x + k~(§ - n),j ]a.;}an (127)

¥
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80 far, no approximations have been masde in the treatment of
the wake integral. The place where they are made is in the
remaining term Ig. This is possible owing to the fact that
the f-reglon of integration, (x,1), in Ig is always small-
er than the chord of the airfoil and that part of the factor

multiphiying e -1k I''(N) in the integrand is, as was the case
previously in the integrals extended over the airfoil region,
of appreclable magnitude in the nelghborhood of the line

N =y only. The terms in question are
N1/8

{(::'_- 07+ v -1 - |y
(zx- 8z -W)

L L x- £ (128)
2 (y - M|y - 1|

and the = sign holds as soon as !y - nl is somewhat larg-
er than |x ~ £| which, considering the assumption regarding
aspect ratios as expressed by equation (98) means over most

of the span., With this observation the approximation for Ig

is
Ig & - ike LK\JE o~1kE T1(N) anag
-] .V-"ﬂ

172 .
' o-ikt f\(x - )% + (y - n>:} ly - nl
r()ff - Lo benat

y - ﬂ x -t x -

(129)

In the first term of equation (129) the integration with re-
spect to ¢ may be carried out, the second term cancels be-
cause the integreni is an o0dd funection of y - M. Hence

]
1 . eik(l-x) (N

Ig = a 130
5 o Y- T n ( )

Introdueing Iy from equation (130), I, from equa-
tion (127) and Iz from equation (117) into equation (123)

there follows
' 1k(1-x) A >
.Fie - ff'(ﬂ){[e-ik 1+
y - M,
. -

Ia
Wl/a -8
3 ) s
kly - nj {;ﬁa + kz(y - ﬂ)df | 1 - oik(l-x T'(n)
+ - ; de amn + j?
X >y 4m y -7

(131)
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Introducihg Iz from equation (131) and I, from equa-

tiorn (115) into equation (114) there follows as approximate
integral equation of lifting-surface theory for the rectangu-
lar nonstationary airfoil

1 ®
: ' Qo-ikt
s -1 fuoll,y) ikel¥* e~ ™
Wo ® ﬂu%q x - £ at + v (Y)b/ — af
=1 1
8 =]
L e2E0-0) ooy )y /’e,n [1 L kg =1
4m J ¥y - N . A
¥ o
" 2 ~1/2 _
§ + k -
- U\ (i n) ? jd:?\}d'n (132)
Putting as an abbreviation
. r \1/2 .
i '(, 2 2 )2!?
S(kiy-—’ﬂl):i/—‘e—i?\ I:l_l_kIY"nl"\?\ ;‘\k(.—)”‘n J :]d.>\
| c (133)
equation (132) may be written in the form -
-1 [ue(ty) ikelk Mokt
Yo T u%aux N at + 21 P(y)b/ x - £ at
oy 1 .
5
elk(l-x) [pi(n) [ hl
- 31 - s(xly - d (134)
yoe . - L ( iy T”)j 1
-

Equations (134) and (133) are the generaligation of
equation (94) of the two-dimensional theory and of equation
(101) of the three-dimensional stationary theory. They re-
duce to these special cases when TI''(7) = 0 or k = O,
respectively. It may be noted that according to equation
(134) the induced velocity due to the finite-span effect
varies across the chord in contrast to the result of the
stationary theory in which this velocity ie uniform. In ad~

(Gition to this the cumulative effect of the spanwise rate of

"change of I' is modified as compared with the result of the
statlonary theory by the occurrence of the function § which
can be tabulated once for all,
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It is because of the chordwise variation of the induced
velocity that it is no longer possible to speak of g 1ifting
line. To expregs the fact thet the derivation of the inte-
gral equation (134) depends on the agsumption of the span be-
ing rather longer than the chord the name of lifting;gtrln
theory is proposesd for the basic equation (134) and for the
conseguences derived therefronm,

Further treatment of eguation (134) is possible by
means of a combination of the known procedures of the two-

dimensional theory and of the three-dimensional stationary
theory.

As in the three-dimensional stationary theory an inte-

gral equation for I is obtained which may be solved by
numerical methods.

As in the two-dimensional theory explicit expressions
for the section 1ift and the section moments can be obtained
in terms of the function I'. This will be done in what fol-
lows for lift and moment of the entire chord, leaving calou-
lation of the aileron hinge moment for future work.

The first step in this program consists in the determi-
nation of wug from equation (134) by means of the inversion
formulas (102) and (103). The result is, if as a further
abbreviation there is put

Q = jér‘(ﬂ) [1- }dn (135)

y -0
1/1 1 + €
uo(x-Y) 1+ xf/l - g Lwo(ﬁ,y) P(Y)f-&-———d}\
eik(l-—E) '1 a (136)
* 41 Q(y)J x - ¢

The section 1ift and the section moments may be calculated
by introducing equation (136) into equations (86) to (88).
From the two-dimensional theory it is known that these cal-
culations lead to explicit results in terms of known func-
tions and in terms of I' for part of equation (136), It
will be shown that also the remaining terms can be expressed
in terms of known functions and in terms of Q.
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THE ZQUATION DETERKINING THE CIRCULATIGN FUNOTIOW

Integrating equation (138)

1
% r =U/ uy dx d/f : : £-fp/ L g woCi,y)
e Lk ik(l-t,)
s 222 r/: — o+ QJ 4 E}dx (137)

To evaluate equation (137) the order of integration with

respect to x and § 4is interchanged and use is made of
equation (106). There follows

(o]
~ ik ~1kA ik(1i-t)
lpa _ 1+£Lw°+l£‘.§_,__r e d?\+.?_.__.__.._Q,?c‘.§(138)
2 . 1 « ¢ 2 4 A -t 4t J

1t remains to evaluate the integrals

f / l-g[/ = ] o (155)

1, =/ 1r b ikt g (140)

To obtain 1Ig, interchange the order of integration

Is- A -11:}\ /’\f1+ 2 ]
- A
=ﬂ/pe-ik?\[l /7‘*'1]6.7\ (141)

N on -1
h
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The value of this integral is known in terms of modified
Bessel functions (82e Durand, vol. II, p. 295)

c—ik ]

(142)

Ig = -TT[Ko<ik) + Ki(ik) -
ik 4

To obtain I, wuse is made of the following known for-
nula (see, for instance, Gray and Mathews Treatise on Bessel
functions, p. 46)

1 e_ikg
/ At = m J,(k) . (143)
. /1._ Ea

-1

From thig there follows

1

I, - /i_i_ﬁ_ omikE gp . n[Jo(k) i iJl(k)] (144)
SSOVARNN L

Substituting equations (142) and (144) in equation (138),

|-

ik

1
SN k ~ik
I = —u/nv//%—i—g Wo .df — l%fi_ r [Kc(ik) + X, (1k) — & ]
el

- E%E Q [Jo(k) - iJ;(k)] (145)

and canceling the term on the left against one of the terms
on the right, rearranging and introducing the value of Q
from equation (135) there follows as integral equation for T,

s

ety + Jolk) - 179y (k) J%q DM I L sy - ni)}-an
2 41ik[Ko(ik) + K, (1k)]%e ¥ - N

1
/13

ikeik[Ko(ik) + X (ik)]

(146)
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A similar equation has been obtained by Cicala (refer-
ence 27) by means of considerations involving vortex filla-
mente. Olcala's equation distinguishes itself from equation
(159) by the fact that the factor Jeolk) - iJi(k) 1is re-

placed by a factor e‘ik. Since for large k

. T
i— =1l
Jolk) = 1J;:(k) = /'%2‘314 e i (1a7)
b

it ie seen that finite span corrections of a different order
of magnitude in Xk are to be expected from Cicala's squa-
tion and from the one given here. The difference is largs
even for relatively small values of %k well within the prac-
tical range ag can be seen by comparing the two terms as fol-"
lows,

=T 2078 &7 20,7 -1 0:7; Jolk) - 47,(k) = 0.85 - 1 036 (148)

It may be noted that Cicala's result would follow from the
basic esgquation (134) if in the third term of this equation
the factor explik(l-x)] were missing. This means that in
Cicala's work the chordwise variation of the finite-span-
effect contribution to the induced veloclity has been left
out of consideration. Further discrepancies which, it ap-
pears, cannot all be accounted for in this manner are found
between Cicala's expressions for section lift and moment and
the expressions given in what follows. It may be emphaslzed
that while there is a formal resemblance between part of the
present results and Cicala's results, the present work and
Cicala's work are fundamentally different. Cicala's approach
to the problem does not permit a rational determination of
"all the factors of importance in the problem.

Regarding Kdesner's work (reference 10) on the same sub-
ject the following may be said. On the basis of the lntegral
equation of lifting-surface theory set up in terms of the ac-
celeration potential Kissner obtains an integral equation for
a quantity which, in the notation of the. present paper, is
the section 1ift 3. Klssner states that this equation is
correct only when wqo(x,y) = W(y)e i¥X and for other func-
tions wo an equivalent Ww might be determined by means of
the equation

1 | 1 '
my)f/ i =f [ () o
= =1 -
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al
o

. It appears that Kissner' result cannot be correct inasmuch
as it does not reduce %0 the value of the section 1ift of the
two-dimensional theory when the assumption of two-dimension-
ality is introduced into the equation. Furthermore, no pro-
vision is made in Kdissner's work for the determination of the
finite-span effect on the values of the gection moments.

The comment that his result does not reduce to the ap-
propriate two-dlmensional result when it should do so applies
also to Sears! special solution (reference 29) for the infi-
nite periodically bent airfoil, BSears' paper also contains
no formula for the effect of three-dimensional flow on the
values of the section moment.

As Jones! work (references 31 and 32) deals with the
transient problem of a rigld airfoll with elliptical form
view no direct comparigon is possible of his results with
the ones given here. Inasmuch, however, as his developments
make essential use of vortex-filament notions it appears de-

. sirable to compare his results with results which may be
obtained on the basis of the notions of the present paper.

DETERMINATION OF THE EXPRESSION FOR THE SECTION LIFT
According to equation (86)
1 _
1 = 1kd/n(1 -~ x) v, dx +-%I‘ (149)

and it remains to evaluate the integral

1

I, = ikd/n(l ~ x) uo dx (150)
-.. 1 .
Substituting equation (136) in equation (;50)

[=-]

ik -ik%
1l - x / _ ike e
‘ J/n(l - J/l + x J%‘ l - ﬁ | i/F

"1

1k(1-t) | o
+ 5 fi‘n'g Q]xdfg}dx _ (151)

ute
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Interchanging the order of integration with respect %to ¢
and x leads to the integral

f(l-—x) 1-x &z _ .5 (¢ - 2) (152)
l +xx - ¢
Eence
1 @
I, = ikd/n(ﬁ - 2) / 1+ €& [wo - LEEiE Pg/['e"ikk an
. . JI 1 - ¢ 2m E - A
-1 (1-8) 1
ik(le
+ & e o,}ag (153)

It is convenient (but not essential) to make use of equation
(138) by writing equation (163) in the form

oo

/ ik ~1k A
IE=_51£ —.’ka [ _ike r.fge - an

21
1

1k(1-£)
...____———Q]dg (154)
47

It remains to evaluate

f Ji1 « t? [f o=t d?\] at : (155)
J/qA/ o—ikf ¢ (156)

I, 4is found by interchanging the order of integration

I/’ o-ikA /’J__l__g_ ]

<o

'rrf ”'“”‘ -A/Az—l]d?\

and
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Integrating by parts

(o2
R | o1k L -ik?\ A+ 1 J }
° - L ik k }\ -1 /T

Using equation (141) and the known formula

[o <]
~1kA
/ s dn = Ko(ik) (157)
Y -1
ARV N |
there follows :
-ik ~-ik \

1o md _ 8 Lok, (1x) - 8 J 158

° =T ik ik { 1(1k) 1k JJ (158)

The integral I o is found by means of the following

fornulas (see Bessel Functions by Gray and Mathews, p. 46 -
reference 35)

1
n = e (g [ ATEa e
B

=

where now I' represents the classical I'-function and

r(d) = -12-¢?

Thus

J, (k)
/Jl- ¢2 o-ikf g¢ o o = (160)

k

Introducing now I, from equation (158) and I,, from equa-
tion (160) into equation (154) there follows after some can-

cellations N
* .
IE_=-ik/ 1 - 2 wo(t,y) &t

-1
ik -ik - ik J. (k)
, ikelk o [Kl(ik) e ] _ ikelk o T (161)
2 ik 4 k

Substituting I, from equation (161) in equation (149),
there follows for the section 1ift



NACA TN No, 946 ’ 53

1 = - ik(/[‘J 1 - €2 wo(t,y) at

-1

s ik:“‘ X, (1K) T(y) - ikzik ETLIRHES (162)

where I’ 1is to be determined from equation (146) and @ 1is
defined by equation (135). PFor two-dimensional motion equa-
tion (162) reduces to

zk--ikal-ezwo(g>ae

K1(1k> r (163)

and, since according to equation (146) the two-dimensional
circulation is given by

f /L + & oy o(8) at
~a 1 - ¢

1xe F Ky (ik) + K, (1k)]

(164)

VY ke B

there follows as special case the known expression for the
section 1ift of the two-dimensional theory

1
- ik / V1 - £2 wo(8)at - Ky (1%) f/l * wo (E)at
-1

Ko(ik) + Ki(ik)
(165)

The factor of the second integral has been designated
by Theodorsen (reference 6) by O(k) = P(k) + i G(k).

It is apparent that once the integral equation (146)
for I has been solved the calculation of the 1ift distri-
bution is no more complicated in the three-dimensional the-
ory than it is in the two-~dimensional theory.

DETERMINATION OF THE EXPRESSION FOR THE SECTION MOMENT

According to equation (87) the section moment about the
semi-chord point is given by
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1 1
m. (o) = EEJ/Q(l - x2) u,. ax +d/nx u,. 4dx (167)
k ) o) (o) i
<1 =1

The second term of this equation can be expressed in terms of
I and I, of equation (150)

1

fxuo dx.:—i—8+1-;- (168)

~1

Hence, with equation (161),

. ik
J/Ax g dx = J/AA/I - £2 w, 4t - E%_ K, (ik)D + é%z + %
. . J,

-1

ik
+ & __ Iy (k) Q (169)
4 k '
It remains %0 evaluate 1
I,, = Ezlc_f(l - x?) u, dx (170)
-1

which, according to equation (136) is given by

g0 EE

_ ike'® | om iR an + ot (1-8) q] ¢ lax (171)
2m ] b - A 41 X - Ej

Ill

1

Interchanging as before the order of integration with regard

to x and £ the following integral has to be evaluated

firsst
1

[ .
forofF e ) o

~1

With this
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=]

1
= ik 2 _ _ 1 _ 1keik e~ikA
a7 <E >~/1- [ I1-1 e
-1
+§f_1f_fi:_§_)_q]ag ' (173)
4m
Writing
gg_ l ga_l 1+E
( A/1___ 2/1_g

and making use of equation (138) I;; may be written in the

form
~ - A
I,, = - __s/Pg /1 - 6 [ 1ke PL/P z ik

1k(1-§)
i———g——q]ag+ll-‘- T (174)
41 8

+

There remains 0 be evaluated

I, = ng/l -3 [f b d)\]dﬁ (175)
I, fg J1 - £2 em1RL gt (176)

The value of I,z 1is found by first interchanging the order
of integration,

(o]

1

fm[/ £/ 1 - 2 dg]@
L =1 ¢-2 '

ﬁb/nle'ikk [% - ﬁ - J A% - £>] an (177)
1

by then lntegrating by parts

I,z
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2ik

—1k
12‘"{"' ['—ik)\ —2}\+ 24?\3-1-:/—__]_'__‘16.7\}

Utilizing equations (142) and (157)

y ~-ik “ -ik -ik K. (ik
Inz=m (— 2 + ji [ -2 + j; (Kl(ik) -2 )] +-—££——21
ik

. 21k ik. ik ik ik J
(179)
The value of I, 18 found with the help of equation
(160)
g, (k)
I, = —— ,/ o1kt ap = mi 3; 2 (k) (180)

-idk: |
~1

Substituting now equations (179) and (180) in equation (174)
there results after some cancellations

A ik -1k
I,, = = %f./ng“/l - t2 w, af + 1kZ P{:z { - eik
=1
o-ik
_(xl(u) ' )J + Ko(ik)} + 8

Introducing equations (181) and (169) into equations (170)
and (167), there follows; after some further cancellations
and after making use of a recurrence formula for Bessel func-~
tions, as expression for the section moment distridbution in
the three~dimensional theory

1 1
mk<o>=fJ1-§zwoag-i§fﬁ/1— £ wo at
i 21

1kelk

. Ta(k) Q (181)

+

1k
Ko(ik) T' + 2— J.(x) @ (182)
8
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For the two-dimsnsional case thls expression for the

section moment reduces to

1 1
IS ) ik ~
B (o) =J/~/1 ~E® wy df - %fuféq/l - €2 wo at + ikz Ko (1k) T
:.1 -1
~ (183)
and with T from equation (164)
Ty (o) ~/PJ 1 - §2 wo d4f - == §J - £2 wy 4¢
1
- Ko(ik) v/n [1+ & 4, at (184)
2 K (1k) + Kp(ik) o/ W/ 1 -
This is in.agreement with the known results for this case.
risu¥f OF BASIC TORMULAS OF LIFTING STRIP THEORY

FOR AIRFOILS OF RECTANGULAR PLAN FORM

(1) The integral equation
reduced for sufficiently large

wolx,y) =

olk(l-x)
- 4an

hfhi__iLl_.ag +

Pk*(n)
et SERBLLAP S |
vy -1

where

Shye

h o= olt

Wo = ikhk +

and
[= <]

s(xjy - ni)

hy, I =

of lifting-surface theory as
aspect ratio,. (s > 3)

ikeik T (y)u/q

s(kly - nl)} an

ikE

0

= i\/p o 1M [1 + B

- nl - y/xa + X (y - n)i]dx
A

(133)
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. The function § 1is related to a function F which is tab-
ulated in equatioen (27), in the following way

8(x) = ix P(x)

(2) The integral representation for the chordwise veloc-
ity component at the airfoil

wteen « 3 [ [T o

1k(1-8) AT i(m) f 1 at
+ & o pr —— Ll - stan — (138)

-8

(3) The integral equation for the circulation function

<]
Jolk) - 1 J (k) re'(n)

41k [Ko(1k) + Kl(ik)] y -

LZn J wodﬁ

- (148)
keik[Ko(ik) + X (1))

1l - S} an

The modified Bessel functions of the second kind may be ex-
pressed in terms of Hankel functions,

Ko(ik) = - & % Ho(a)(k), Ky (1k) = - % Hl(z)(k)

(4) The formula for the section lift 1 = lyp ot

welk
, by = - ik /'Jl_gawo at + 25T (11) Toely)

_1xelk® g, (k) jf_lzli.:l_ s} an (162)
- T
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(5) The formula for the section moment about the semi-
chord point m(o) = my(o) olt

mp(o) = ./P N1 - ¢2 Vo at - ¢/l - £2 v, at

+ _____ikz__k Ko(ik) Dily) + 2_ To(k) /Tk My - s} an  (182)

OONCLUDING REMARKS

The developments of this paper indicate that use of the
velocity potential is preferable in important respects to
the use of the acceleration potential in thin-airfoil theory.

Recognition of this fact is considered as an essential
aid in the establishment of "lifting-strip" theory for a non-
stationary airfoll. While this theory has here been devel-
oped for airfolles of rectangular plan form it can be extended
to tapered airfoils.

Application of the results of the present paper should
permit, among other thinge, the investigation of the aero-
dynamic span effect in the problem of wing flutter. TFor this
purpose it remains to establish a convenient scheme for the
numerlcal solutlon of the integral equation for the circula-
tion function,.

While some investigators have stated as their opinion -
that the error in flutter caleculations resulting from the
agsumption of two-dimensional flow is neglibibly small for
all wings with aspesct ratios above three, the author consid-
ers the avallable evidence as inconclusive. He believes that
a decision on this question can be reached by applying the
results of part III of this paper to a number of representa-
tive flutter cases.

It 1s emphasized that the manner in which 1lifting-strip
theory is obtalned indicates that its range of validity 1is
no less than the range of validity of 1lifting-line theory
for the stationary airfoil. Inasmuch as experiments have
shown that lifting-line theory may be applied for wings wilth
aspect ratios as low as three, the same must be true for the
results obtained in part III of this paper for the nonsta~
tionary.alrfoil, It should be possible to apply lifting-
strip theory %o tail flutter prodlems,

Massachusetts Institute of Technology,
Cambridge, Mass., Feb. 1943,
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